Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.524
Filtrar
1.
Behav Brain Res ; 460: 114801, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070690

RESUMO

The Wnt/beta-catenin pathway plays a crucial role in regulating cellular processes and has been implicated in neural activity-dependent learning as well as anxiety. However, the role of this pathway in young children with abnormal cortical development is unknown. Cortical malformations at early development, behavioral abnormalities, and a susceptibility to seizures have been reported in rats prenatally exposed to methylazoxymethanol. In this study, we aimed to investigate whether we could improve the behavioral deficits in young rats with malformed cerebral cortices by modulation of the Wnt/beta-catenin pathway. We found a small molecule Wnt/beta-catenin inhibitor (CWP) that increased exploratory behavior in the open field test (P9, CWP 100 ug treatment, peripheral exploration, P = 0.011) and social behavior test (P12, CWP 250 ug treatment, distance traveled in center, P = 0.033) and decreased anxiety in fear conditioning. However, it did not reduce the susceptibility to seizures. After high dose (250 ug) CWP treatment at P12, phosphocreatine and glutathione (GSH) were decreased in the cortex at P15 (P = 0.021). These findings suggest that the role of Wnt/beta-catenin signaling in exploratory behavior and anxiety during early development warrants further investigation.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , Ratos , Ansiedade/tratamento farmacológico , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurogênese , Convulsões , Via de Sinalização Wnt/efeitos dos fármacos
2.
Eur J Pharmacol ; 964: 176306, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38145647

RESUMO

During the production of orexin A and B from preproorexin, a common precursor protein, in hypothalamic orexin neurons, C-terminal peptide (herein called preproorexin C-peptide) is concomitantly produced via post-translational processing. The predicted three-dimensional structure of preproorexin C-peptide is similar among mammalian species, suggestive of a conserved function in the mammalian brain. However, C-peptide has long been regarded as a non-functional peptide. We herein examined the effects of rat and/or mouse preproorexin C-peptide on gene expression and cell viability in cultured rat cerebrocortical cells and on memory behavior in C57BL/6J mice. Rat and mouse C-peptides both increased brain-derived neurotrophic factor (Bdnf) mRNA levels. Moreover, C-peptide enhanced high K+-, glutamate-, and BDNF-induced increases in Bdnf mRNA levels without affecting forskolin-induced Bdnf expression. H-89, a protein kinase A inhibitor, blocked C-peptide-induced Bdnf expression, whereas rolipram, a phosphodiesterase inhibitor, enhanced this effect. Intracellular cyclic AMP concentrations were elevated by C-peptide. These results demonstrate that preproorexin C-peptide promoted Bdnf mRNA expression by a cyclic AMP-dependent mechanism. Eleven amino acids at the N terminus of rat preproorexin C-peptide exerted similar effects on Bdnf expression as full-length preproorexin C-peptide. Preproorexin C-peptide also exerted protective effects against CoCl2-induced neuronal cell death. An intracerebroventricular injection of mouse preproorexin C-peptide induced c-fos and Bdnf expression in the cerebral cortex and hippocampus and enhanced novel object recognition memory in mice. Collectively, the present results show that preproorexin C-peptide is a functional substance, at least in some pharmacological and neuronal settings.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Orexinas , Fragmentos de Peptídeos , Animais , Camundongos , Ratos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Orexinas/farmacologia , RNA Mensageiro/metabolismo , Fragmentos de Peptídeos/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo
3.
Biomed Res Int ; 2023: 9911397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564141

RESUMO

The anti-dementia effect following ischemic stroke with metabolic syndrome (MetS) of the polyherbal functional ingredient comprising ginger, Chinese date, and wood ear mushroom (GCJ) was hypothesized due to its neuroprotective effect against stroke. This study was performed to test this hypothesis and to explore the underlying mechanism. Male Wistar rats weighing 180-220 g were induced metabolic syndrome (MetS) with a 16-week high-carbohydrate high-fat diet (HCHF) feeding. The rats with MetS characteristics were orally administered GCJ at various doses (GCJ100, GCJ200, and GCJ300 mg kg-1 BW) 21 days pre-induction and 21 days post-induction of reperfusion injury (I/R) at the right middle cerebral artery (MCAO). Memory was evaluated every 7 days during the study period. At the end of the study, neuron density, AChE activity, and the expressions of eNOS, BDNF, and pERK/ERK in the prefrontal cortex, and hippocampus were also determined. MetS rats with GCJ treatment improved memory impairment, enhanced neuron density, and increased the expressions of eNOS, BDNF, and pERK/ERK but suppressed AChE in both areas. Therefore, the anti-dementia effect following ischemic stroke with metabolic syndrome of GCJ may involve the improvement of AChE, eNOS, BDNF, pERK/ERK, and neural plasticity. However, this required confirmation by clinical study.


Assuntos
Demência , Medicamentos de Ervas Chinesas , AVC Isquêmico , Síndrome Metabólica , Fármacos Neuroprotetores , Animais , Masculino , Ratos , Agaricales , Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Demência/tratamento farmacológico , Demência/etiologia , Demência/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Phoeniceae , Ratos Wistar , Modelos Animais de Doenças
4.
Cell Mol Neurobiol ; 43(6): 2895-2907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36862242

RESUMO

Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.


Assuntos
Córtex Cerebral , Metabolismo Energético , Cofatores de Molibdênio , Sulfito Oxidase , Sulfitos , Animais , Ratos , Animais Recém-Nascidos , Oxirredução , Sulfitos/efeitos adversos , Sulfito Oxidase/metabolismo , Cofatores de Molibdênio/metabolismo , Ratos Wistar , Homeostase , Mitocôndrias/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Antioxidantes/metabolismo
5.
Curr Alzheimer Res ; 20(1): 29-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892031

RESUMO

OBJECTIVE: The objective of this study is to investigate the neuroprotective effects of ß- sitosterol using the AlCl3 model of Alzheimer's Disease. METHODS: AlCl3 model was used to study cognition decline and behavioral impairments in C57BL/6 mice. Animals were randomly assigned into 4 groups with the following treatments: Group 1 received normal saline for 21 days, Group 2 received AlCl3 (10 mg/kg) for 14 days; Group 3 received AlCl3(10 mg/kg) for 14 days + ß-sitosterol (25mg/kg) for 21 days; while Group 4 was administered ß-sitosterol (25mg/kg) for 21 days. On day 22, we performed the behavioral studies using a Y maze, passive avoidance test, and novel object recognition test for all groups. Then the mice were sacrificed. The corticohippocampal region of the brain was isolated for acetylcholinesterase (AChE), acetylcholine (ACh), and GSH estimation. We conducted histopathological studies using Congo red staining to measure ß -amyloid deposition in the cortex and hippocampal region for all animal groups. RESULTS: AlCl3 successfully induced cognitive decline in mice following a 14-day induction period, as shown by significantly decreased (p < 0.001) in step-through latency, % alterations, and preference index values. These animals also exhibited a substantial decrease in ACh (p <0.001) and GSH (p < 0.001) and a rise in AChE (p < 0.001) compared to the control group. Mice administered with AlCl3 and ß-sitosterol showed significantly higher step-through latency time, % alteration time, and % preference index (p < 0.001) and higher levels of ACh, GSH, and lower levels of AChE in comparison to the AlCl3 model. AlCl3-administered animals also showed higher ß-amyloid deposition, which got significantly reduced in the ß-sitosterol treated group. CONCLUSION: AlCl3 was effectively employed to induce a cognitive deficit in mice, resulting in neurochemical changes and cognitive decline. ß -sitosterol treatment mitigated AlCl3-mediated cognitive impairment.


Assuntos
Cloreto de Alumínio , Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Sitosteroides , Animais , Camundongos , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Cloreto de Alumínio/administração & dosagem , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Aprendizagem da Esquiva/efeitos dos fármacos , Estudos de Casos e Controles , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Simulação por Computador , Modelos Animais de Doenças , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Sitosteroides/farmacologia
6.
Science ; 379(6633): 700-706, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795823

RESUMO

Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.


Assuntos
Antidepressivos , Córtex Cerebral , Alucinógenos , Plasticidade Neuronal , Receptor 5-HT2A de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Serotonina/farmacologia , Transdução de Sinais , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Animais , Camundongos , Camundongos Knockout , Antidepressivos/farmacologia
7.
FASEB J ; 36(3): e22186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120261

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease-modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock-enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB-containing diets. NOB significantly alleviated ß-amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel-running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock-controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time-dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis-associated neuroinflammation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Flavonas/farmacologia , Gliose/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonas/uso terapêutico , Gliose/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Fármacos Neuroprotetores/uso terapêutico
8.
Sci Rep ; 12(1): 1919, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121751

RESUMO

Robust biomarkers for anti-epileptic drugs (AEDs) activity in the human brain are essential to increase the probability of successful drug development. The frequency analysis of electroencephalographic (EEG) activity, either spontaneous or evoked by transcranial magnetic stimulation (TMS-EEG) can provide cortical readouts for AEDs. However, a systematic evaluation of the effect of AEDs on spontaneous oscillations and TMS-related spectral perturbation (TRSP) has not yet been provided. We studied the effects of Lamotrigine, Levetiracetam, and of a novel potassium channel opener (XEN1101) in two groups of healthy volunteers. Levetiracetam suppressed TRSP theta, alpha and beta power, whereas Lamotrigine decreased delta and theta but increased the alpha power. Finally, XEN1101 decreased TRSP delta, theta, alpha and beta power. Resting-state EEG showed a decrease of theta band power after Lamotrigine intake. Levetiracetam increased theta, beta and gamma power, while XEN1101 produced an increase of delta, theta, beta and gamma power. Spontaneous and TMS-related cortical oscillations represent a powerful tool to characterize the effect of AEDs on in vivo brain activity. Spectral fingerprints of specific AEDs should be further investigated to provide robust and objective biomarkers of biological effect in human clinical trials.


Assuntos
Anticonvulsivantes/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia , Lamotrigina/farmacologia , Levetiracetam/farmacologia , Compostos Orgânicos/farmacologia , Estimulação Magnética Transcraniana , Adulto , Córtex Cerebral/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
9.
Sci Rep ; 12(1): 2701, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177771

RESUMO

Traumatic brain injury (TBI) is an important cause of death in young adults and children. Till now, the treatment of TBI in the short- and long-term complications is still a challenge. Our previous evidence implied aquaporin 4 (AQP4) and hypoxia inducible factor-1α (HIF-1α) might be potential targets for TBI. In this study, we explored the roles of AQP4 and HIF-1α on brain edema formation, neuronal damage and neurological functional deficits after TBI using the controlled cortical injury (CCI) model. The adult male Sprague Dawley rats were randomly divided into sham and TBI group, the latter group was further divided into neutralized-AQP4 antibody group, 2-methoxyestradiol (2-ME2) group, and their corresponding control, IgG and isotonic saline groups, respectively. Brain edema was examined by water content. Hippocampal neuronal injury was assessed by neuron loss and neuronal skeleton related protein expressions. Spatial learning and memory deficits were evaluated by Morris water maze test and memory-related proteins were detected by western blot. Our data showed that increased AQP4 protein level was closely correlated with severity of brain edema after TBI. Compared with that in the control group, both blockage of AQP4 with neutralized-AQP4 antibody and inhibition of HIF-1α with 2-ME2 for one-time treatment within 30-60 min post TBI significantly ameliorated brain edema on the 1st day post-TBI, and markedly alleviated hippocampal neuron loss and spatial learning and memory deficits on the 21st day post-TBI. In summary, our preliminary study revealed the short-term and long-term benefits of targeting HIF-1α-AQP4 axis after TBI, which may provide new clues for the selection of potential therapeutic targets for TBI in clinical practice.


Assuntos
Aquaporina 4/antagonistas & inibidores , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Córtex Cerebral/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neurônios/metabolismo , 2-Metoxiestradiol/administração & dosagem , Animais , Anticorpos/administração & dosagem , Aquaporina 4/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Transtorno Conversivo/tratamento farmacológico , Transtorno Conversivo/etiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intravenosas , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley
10.
Sci Rep ; 12(1): 1710, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110605

RESUMO

The study is aimed at elucidating the effect of selenium nanoparticles (SeNPs) on the death of cells in the primary culture of mouse cerebral cortex during oxygen and glucose deprivation (OGD). A primary cell culture of the cerebral cortex containing neurons and astrocytes was subjected to OGD and reoxygenation to simulate cerebral ischemia-like conditions in vitro. To evaluate the neuroprotective effect of SeNPs, cortical astrocytes and neurons were incubated for 24 h with SeNPs, and then subjected to 2-h OGD, followed by 24-h reoxygenation. Vitality tests, fluorescence microscopy, and real-time PCR have shown that incubation of primary cultured neurons and astrocytes with SeNPs at concentrations of 2.5-10 µg/ml under physiological conditions has its own characteristics depending on the type of cells (astrocytes or neurons) and leads to a dose-dependent increase in apoptosis. At low concentration SeNPs (0.5 µg/ml), on the contrary, almost completely suppressed the processes of basic necrosis and apoptosis. Both high (5 µg/ml) and low (0.5 µg/ml) concentrations of SeNPs, added for 24 h to the cells of cerebral cortex, led to an increase in the expression level of genes Bcl-2, Bcl-xL, Socs3, while the expression of Bax was suppressed. Incubation of the cells with 0.5 µg/ml SeNPs led to a decrease in the expression of SelK and SelT. On the contrary, 5 µg/ml SeNPs caused an increase in the expression of SelK, SelN, SelT, SelP. In the ischemic model, after OGD/R, there was a significant death of brain cells by the type of necrosis and apoptosis. OGD/R also led to an increase in mRNA expression of the Bax, SelK, SelN, and SelT genes and suppression of the Bcl-2, Bcl-xL, Socs3, SelP genes. Pre-incubation of cell cultures with 0.5 and 2.5 µg/ml SeNPs led to almost complete inhibition of OGD/R-induced necrosis and greatly reduced apoptosis. Simultaneously with these processes we observed suppression of caspase-3 activation. We hypothesize that the mechanisms of the protective action of SeNPs involve the activation of signaling cascades recruiting nuclear factors Nrf2 and SOCS3/STAT3, as well as the activation of adaptive pathways of ESR signaling of stress arising during OGD and involving selenoproteins SelK and SelT, proteins of the Bcl-2 family ultimately leading to inactivation of caspase-3 and inhibition of apoptosis. Thus, our results demonstrate that SeNPs can act as neuroprotective agents in the treatment of ischemic brain injuries.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Glucose/deficiência , Nanopartículas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos de Selênio/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipóxia Celular , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Técnicas de Cocultura , Feminino , Masculino , Camundongos , Necrose , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Selenoproteínas/genética , Selenoproteínas/metabolismo
11.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164225

RESUMO

Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.


Assuntos
Alcaloides/farmacologia , Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Corydalis/química , Ácido Glutâmico/metabolismo , Tecido Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Córtex Cerebral/metabolismo , Masculino , Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Biochem Biophys Res Commun ; 593: 129-136, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063768

RESUMO

Social interaction deficit is core symptom of children with autism, owing to interaction of genetic predisposition and environmental toxins. Sevoflurane could induce neurotoxicity in developing brain in rodent models. This study aims to investigate whether sevoflurane anesthesia in neonatal period could impair social behaviors in male and female mice. Twenty-eight male and thirty-one female mice were randomly assigned to receive 3.0% sevoflurane or 60% oxygen on postnatal day 6. They were tested for social interaction behaviors at one- and two-month-old. In addition, the cortex and hippocampus of neonatal mice undergoing sevoflurane anesthesia were harvested for immunoblotting analysis. As a result, both male and female mice undergoing sevoflurane anesthesia showed strong sociability and weak preference for social novelty at juvenile age. In addition, the male mice developed normal preference for social novelty at early-adulthood; However, the female mice remained weak preference for social novelty. Furthurmore, sevoflurane anesthesia could decrease the levels of PSD95 but not Neuroligin-1 in the hippocampus but not cortex of neonatal mice. In conclusion, sevoflurane anesthesia in neonatal period could disturb development of social memory and impair preference for social novelty in female mice at early-adulthood, with the potential mechanism of decreasing PSD95 expression in the hippocampus of C57BL/6 mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/patologia , Hipocampo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Sevoflurano/toxicidade , Comportamento Social , Animais , Animais Recém-Nascidos , Córtex Cerebral/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Agregação Plaquetária/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
13.
Environ Toxicol Pharmacol ; 90: 103816, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066145

RESUMO

Cadmium is a toxic metal that can damage the brain and other organs. This study aimed to explore the protective effects of Potentilla anserine L. polysaccharide (PAP) against CdCl2-induced neurotoxicity in N2a and SH-SY5Y cells and in the cerebral cortex of BALB/c mice. In addition, we aimed to identify the potential mechanisms underlying these protective effects. Relative to CdCl2 treatment alone, pretreatment with PAP prevented the reduction in cell viability evoked by CdCl2, decreased rates of apoptosis, promoted calcium homeostasis, decreased ROS accumulation, increased mitochondrial membrane potential, inhibited cytochrome C and AIF release, and prevented the cleavage of caspase-3 and PARP. In addition, PAP significantly decreased the CdCl2-induced phosphorylation of CaMKII, Akt, and mTOR. In conclusion, PAP represents a potential therapeutic agent for the treatment of Cd-induced neurotoxicity, functioning in part via attenuating the activation of the mitochondrial apoptosis pathway and the Ca2+-CaMKII-dependent Akt/mTOR pathway.


Assuntos
Cloreto de Cádmio/toxicidade , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Potentilla/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Substâncias Protetoras/farmacologia
14.
Neuroimage ; 249: 118891, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007718

RESUMO

Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. However, the modulation of brain activity repertoire across varying states of consciousness has not yet been studied in a systematic and unified framework. As a unique drug that has both psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity to examine brain reconfiguration dynamics along a continuum of consciousness. Here we investigated the dynamic organization of cortical activity during wakefulness and during altered states of consciousness induced by different doses of ketamine. Through k-means clustering analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we identified a set of recurring states that represent frequency-specific spatial coactivation patterns. We quantified the effect of ketamine on individual brain states in terms of fractional occupancy and transition probabilities and found that ketamine anesthesia tends to shift the configuration toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain state organization, with the repertoire richness evolving from a reduced level to one comparable to that of normal wakefulness before recovery of consciousness. These results provide a novel description of ketamine's modulation of the dynamic configuration of cortical activity and advance understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, and spectral structures of underlying whole-brain dynamics.


Assuntos
Anestésicos Dissociativos/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia/métodos , Ketamina/farmacologia , Vigília/efeitos dos fármacos , Adulto , Anestesia Geral , Anestésicos Dissociativos/administração & dosagem , Humanos , Ketamina/administração & dosagem
15.
Neuroimage ; 250: 118935, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091079

RESUMO

Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p ≤ 0.001), increased tissue oxygenation (6.4%, p ≤ 0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p ≤ 0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p ≤ 0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p ≤ 0.001) while the reduced state decreased (-34.4%, p ≤ 0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p ≤ 0.01) and cuprizone (-28.8%, p ≤ 0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p ≤ 0.01) and corpus callosum (-5.5%, p ≤ 0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Cuprizona/farmacologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Hipóxia Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Remielinização/fisiologia , Marcadores de Spin
16.
Brain Res Bull ; 181: 46-54, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077842

RESUMO

The aim of the current study was to determine the effects of cerebral contusion injury with purinergic adenosine triphosphate Y1 (P2Y1) receptor blockers on postinjury inflammatory responses. Adenosine triphosphate (ATP) is released into the extracellular space in several in vivo models, including traumatic brain injury. Released ATP triggers neuroinflammation via activation of microglial cells. P2Y1 receptor blockers were reported to suppress extracellular ATP elevation in several disease models through inhibition of cellular ATP release. In addition to the beneficial effects of inflammation, excess inflammatory reactions cause secondary damage and aggravate outcomes. Here, we assessed the effect of the selective P2Y1 receptor blocker MRS2179 on its potential to prevent posttraumatic inflammation in a rat cerebral contusion model. Cerebral contusion injury was induced in the rat cerebral cortex. Either MRS2179 or artificial cerebral spinal fluid as a control was administered in situ into the center of contused tissue via a subcutaneously implanted osmotic pump. Galectin 3, a marker of microglia and proinflammatory cytokines, was measured 1, 3 and 7 days following injury. Another group of rats was assessed for behavioral performance up to 28 days after injury, including the beam walk test, neurological response test and plus maze test. The Galectin 3 levels in the cortex around the contusion cavity and in the cortex far from the contusion cavity were significantly suppressed by MRS2179 administration on postinjury Days 1 and 3 (p < 0.05). However, administration of MRS2179 failed to improve behavioral outcome. Administration of MRS2179 successfully suppressed microglial activation in a traumatic brain injury model, which will be a potent treatment option in the future. Further study is required to conclude its therapeutic effects.


Assuntos
Difosfato de Adenosina/análogos & derivados , Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Galectina 3/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/imunologia , Córtex Cerebral/imunologia , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Ratos
17.
Front Neural Circuits ; 16: 1065374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589861

RESUMO

Background: Volatile anesthetics including sevoflurane and isoflurane enhance oscillations of cortical electroencephalogram (EEG), partly by their modulations on glutamate-mediated excitatory synaptic transmission. Expression of NMDA receptors is increased during neonatal development. However, how the development of NMDA receptors influences EEG under volatile anesthesia remains unclear. Methods: Expressions of NMDA receptor subtypes (NR1, NR2A, and NR2B) during neonatal development were measured by Western blotting. MAC (minimal alveolar concentration) of isoflurane and sevoflurane that inducing loss of righting reflex (LORR) and no response to tail-clamp (immobility) were measured to verify the effect of NR1 expression on anesthetic potency during neonatal development. Cortical electroencephalogram recording was used to examine the influence of NR1 expression on the power density of EEG. Results: The expressions of GluNR1, GluNR2A and GluNR2B receptors were gradually increased during neonatal development in cortex, hippocampus and thalamus of rats. Knockdown of NR1 enhanced the sedative potency of volatile anesthetics but not on immobility potency in postnatal day 14 (P14)-P17 rats. For cortical EEG, along with the increased concentration of volatile anesthetics, cortical slow-delta oscillations of P5 rats were inhibited, theta and alpha oscillations were not changed significantly; while these oscillations were enhanced until high anesthetic concentrations in P21 rats. Knockdown of NR1 in forebrain suppressed the enhancement of cortical EEG oscillations in P21 rats. Conclusion: The development of NMDA receptors may contribute to the enhancement of cortical EEG oscillations under volatile anesthetics.


Assuntos
Anestésicos Inalatórios , Córtex Cerebral , Eletroencefalografia , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Anestésicos Inalatórios/farmacologia , Eletroencefalografia/efeitos dos fármacos , Isoflurano/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sevoflurano/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/embriologia
18.
Neurosci Lett ; 771: 136413, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942319

RESUMO

Fingolimod (FTY720) is a sphingosine 1-phosphate (S1P) receptor agonist. Here, to understand biological activity of FTY720 pretreatment and post-treatment on cerebral ischemia reperfusion injury (CIRI), rat transient middle cerebral artery occlusion/reperfusion (tMCAO/R) model was generated. Neurological deficit scoring was assessed after tMCAO/R. Four groups were established including sham-operated control group, operated group, and two FTY720-treated groups. Neuron damage was observed by Nissl staining. Gene expression was measured using qPCR and western blot analysis. Tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) levels were evaluated by enzyme-linked immunosorbent assay (ELISA). We uncovered that neurological score in two FTY720-treated groups was significantly lower than that in the operated group. FTY720 pretreatment or posttreatment groups had a significantly increased number of Nissl bodies in cerebral cortex as compared with the operated group, indicating that FTY720 administration reduced neuronal damage. Besides, FTY720 posttreatment improved memory impairment induced by tMCAO/R. In addition, IL-1ß, IL-6, and TNF-α levels in the cerebral cortex and hippocampus of two FTY720-treated groups were significantly decreased in comparison to the operated group, showing that FTY720 could reduce the release of inflammatory cytokines in brain tissue. Furthermore, phosphorylation of p38MAPK and NF-κB pathway-related molecules in ischemic brain tissues of FTY720 group were markedly down-regulated compared to the operated group. Together, FTY720 pretreatment or posttreatment improved the neurological deficit of middle cerebral ischemia/reperfusion rat model and reduced neuronal damage by decreasing the levels of inflammatory cytokines and attenuating the phosphorylation levels of p38MAPK and NF-κB pathway-associated molecules. FTY720 exhibits neuroprotective effects against ischemic reperfusion injury in rats.


Assuntos
Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Interleucinas/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
Biomed Pharmacother ; 146: 112301, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34915415

RESUMO

Treatment of sleep disorders promotes the long-term use of commercially available sleep inducers that have several adverse effects, including addiction, systemic fatigue, weakness, loss of concentration, headache, and digestive problems. Therefore, we aimed to limit these adverse effects by investigating a natural product, the extract of the Hibiscus syriacus Linnaeus flower (HSF), as an alternative treatment. In the electric footshock model, we measured anxiety and assessed the degree of sleep improvement after administering HSF extract. In the restraint model, we studied the sleep rate using PiezoSleep, a noninvasive assessment system. In the pentobarbital model, we measured sleep improvement and changes in sleep-related factors. Our first model confirmed the desirable effects of HSF extract and its active constituent, saponarin, on anxiolysis and Wake times. HSF extract also increased REM sleep time. Furthermore, HSF extract and saponarin increased the expression of cortical GABAA receptor α1 (GABAAR α1) and c-Fos in the ventrolateral preoptic nucleus (VLPO). In the second model, HSF extract and saponarin restored the sleep rate and the sleep bout duration. In the third model, HSF extract and saponarin increased sleep maintenance time. Moreover, HSF extract and saponarin increased cortical cholecystokinin (CCK) mRNA levels and the expression of VLPO c-Fos. HSF extract also increased GABAAR α1 mRNA level. Our results suggest that HSF extract and saponarin are effective in maintaining sleep and may be used as a novel treatment for sleep disorder. Eventually, we hope to introduce HSF and saponarin as a clinical treatment for sleep disorders in humans.


Assuntos
Apigenina/uso terapêutico , Glucosídeos/uso terapêutico , Hibiscus , Extratos Vegetais/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Sono/efeitos dos fármacos , Animais , Apigenina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Corticosterona/sangue , Modelos Animais de Doenças , Eletroencefalografia , Glucosídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pentobarbital , Extratos Vegetais/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Medicamentos Indutores do Sono , Transtornos do Sono-Vigília/sangue , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Estresse Psicológico/sangue , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
20.
J Neurochem ; 160(3): 305-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905223

RESUMO

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidases/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...